Filtros : "Haigh, Sarah J" Limpar

Filtros



Refine with date range


  • Source: ACS Catalysis. Unidades: IQ, ESALQ

    Subjects: NANOPARTÍCULAS, OURO, HIDROGÊNIO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Maria Paula de Souza et al. Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light. ACS Catalysis, v. 11, n. 21, p. 13543−13555, 2021Tradução . . Disponível em: https://doi.org/10.1021/acscatal.1c02938. Acesso em: 27 abr. 2024.
    • APA

      Rodrigues, M. P. de S., Dourado, A. H. B., Cutolo, L. de O., Parreira, L. S., Alves, T. V., Slater, T. J. A., et al. (2021). Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light. ACS Catalysis, 11( 21), 13543−13555. doi:10.1021/acscatal.1c02938
    • NLM

      Rodrigues MP de S, Dourado AHB, Cutolo L de O, Parreira LS, Alves TV, Slater TJA, Haigh SJ, Camargo PHC de, Torresi SIC de. Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light [Internet]. ACS Catalysis. 2021 ; 11( 21): 13543−13555.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1021/acscatal.1c02938
    • Vancouver

      Rodrigues MP de S, Dourado AHB, Cutolo L de O, Parreira LS, Alves TV, Slater TJA, Haigh SJ, Camargo PHC de, Torresi SIC de. Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light [Internet]. ACS Catalysis. 2021 ; 11( 21): 13543−13555.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1021/acscatal.1c02938
  • Source: Nanoscale. Unidade: IQ

    Subjects: CATALISADORES, ENERGIA SOLAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Isabel C. de et al. Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties. Nanoscale, v. 12, p. 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23), 2020Tradução . . Disponível em: https://doi.org/10.1039/d0nr01875a. Acesso em: 27 abr. 2024.
    • APA

      Freitas, I. C. de, Parreira, L. S., Barbosa, E. C. M., Novaes, B. A., Mou, T., Alves, T. V., et al. (2020). Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties. Nanoscale, 12, 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23). doi:10.1039/d0nr01875a
    • NLM

      Freitas IC de, Parreira LS, Barbosa ECM, Novaes BA, Mou T, Alves TV, Quiroz J, Wang Y-C, Slater TJ, Thomas A, Wang B, Haigh SJ, Camargo PHC de. Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties [Internet]. Nanoscale. 2020 ; 12 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23).[citado 2024 abr. 27 ] Available from: https://doi.org/10.1039/d0nr01875a
    • Vancouver

      Freitas IC de, Parreira LS, Barbosa ECM, Novaes BA, Mou T, Alves TV, Quiroz J, Wang Y-C, Slater TJ, Thomas A, Wang B, Haigh SJ, Camargo PHC de. Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties [Internet]. Nanoscale. 2020 ; 12 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23).[citado 2024 abr. 27 ] Available from: https://doi.org/10.1039/d0nr01875a
  • Source: Nano Letters. Unidade: IQ

    Subjects: HIDROGENAÇÃO, PLATINA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUIROZ, Jhon et al. Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Letters, v. 18, p. 7289-7297, 2018Tradução . . Disponível em: https://doi.org/10.1021/acs.nanolett.8b03499. Acesso em: 27 abr. 2024.
    • APA

      Quiroz, J., Barbosa, E. C. M., Araújo, T. P., Fiorio, J. L., Wang, Y. -C., Zou, Y. -C., et al. (2018). Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Letters, 18, 7289-7297. doi:10.1021/acs.nanolett.8b03499
    • NLM

      Quiroz J, Barbosa ECM, Araújo TP, Fiorio JL, Wang Y-C, Zou Y-C, Mou T, Alves TV, Oliveira DC de, Wang B, Haigh SJ, Rossi LM, Camargo PHC de. Controlling reaction selectivity over hybrid plasmonic nanocatalysts [Internet]. Nano Letters. 2018 ; 18 7289-7297.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1021/acs.nanolett.8b03499
    • Vancouver

      Quiroz J, Barbosa ECM, Araújo TP, Fiorio JL, Wang Y-C, Zou Y-C, Mou T, Alves TV, Oliveira DC de, Wang B, Haigh SJ, Rossi LM, Camargo PHC de. Controlling reaction selectivity over hybrid plasmonic nanocatalysts [Internet]. Nano Letters. 2018 ; 18 7289-7297.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1021/acs.nanolett.8b03499
  • Source: Chemical Communications. Unidade: IQ

    Subjects: NANOTECNOLOGIA, MATERIAIS NANOESTRUTURADOS, CATÁLISE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Anderson G. M. da et al. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, v. 53, p. 7135-7148, 2017Tradução . . Disponível em: https://doi.org/10.1039/c7cc02352a. Acesso em: 27 abr. 2024.
    • APA

      Silva, A. G. M. da, Rodrigues, T. S., Haigh, S. J., & Camargo, P. H. C. de. (2017). Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, 53, 7135-7148. doi:10.1039/c7cc02352a
    • NLM

      Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications [Internet]. Chemical Communications. 2017 ; 53 7135-7148.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1039/c7cc02352a
    • Vancouver

      Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications [Internet]. Chemical Communications. 2017 ; 53 7135-7148.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1039/c7cc02352a
  • Source: Ultramicroscopy. Unidade: IQ

    Subjects: ESPECTROSCOPIA DE RAIO X, NANOPARTÍCULAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SLATER, Thomas J. A et al. STEM-EDX tomography of bimetallic nanoparticles: a methodological investigation. Ultramicroscopy, v. 162, p. 61-73, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.ultramic.2015.10.007. Acesso em: 27 abr. 2024.
    • APA

      Slater, T. J. A., Janssen, A., Camargo, P. H. C. de, Burke, M. G., Zaluzec, N. J., & Haigh, S. J. (2016). STEM-EDX tomography of bimetallic nanoparticles: a methodological investigation. Ultramicroscopy, 162, 61-73. doi:10.1016/j.ultramic.2015.10.007
    • NLM

      Slater TJA, Janssen A, Camargo PHC de, Burke MG, Zaluzec NJ, Haigh SJ. STEM-EDX tomography of bimetallic nanoparticles: a methodological investigation [Internet]. Ultramicroscopy. 2016 ; 162 61-73.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1016/j.ultramic.2015.10.007
    • Vancouver

      Slater TJA, Janssen A, Camargo PHC de, Burke MG, Zaluzec NJ, Haigh SJ. STEM-EDX tomography of bimetallic nanoparticles: a methodological investigation [Internet]. Ultramicroscopy. 2016 ; 162 61-73.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1016/j.ultramic.2015.10.007
  • Source: ChemBanoMat. Unidade: IQ

    Subjects: NANOPARTÍCULAS, MATERIAIS NANOESTRUTURADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YAMADA, Liliam Kaori et al. Bimetallic Au@Pd-Au tadpole-shaped asymmetric nanostructures by a combination of precursor reduction and ostwald ripening. ChemBanoMat, v. 2, n. 6, p. 509-514, 2016Tradução . . Disponível em: https://doi.org/10.1002/cnma.2 01600049. Acesso em: 27 abr. 2024.
    • APA

      Yamada, L. K., Silva, A. G. M. da, Rodrigues, T. S., Haigh, S. J., & Camargo, P. H. C. de. (2016). Bimetallic Au@Pd-Au tadpole-shaped asymmetric nanostructures by a combination of precursor reduction and ostwald ripening. ChemBanoMat, 2( 6), 509-514. doi:10.1002/cnma.2 01600049
    • NLM

      Yamada LK, Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Bimetallic Au@Pd-Au tadpole-shaped asymmetric nanostructures by a combination of precursor reduction and ostwald ripening [Internet]. ChemBanoMat. 2016 ; 2( 6): 509-514.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1002/cnma.2 01600049
    • Vancouver

      Yamada LK, Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Bimetallic Au@Pd-Au tadpole-shaped asymmetric nanostructures by a combination of precursor reduction and ostwald ripening [Internet]. ChemBanoMat. 2016 ; 2( 6): 509-514.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1002/cnma.2 01600049
  • Source: Chemistry-A European Journal. Unidade: IQ

    Subjects: NANOPARTÍCULAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Anderson Gabriel Marques da et al. Surface segregated 'AG''AU' tadpole-shaped nanoparticles synthesized via a single step combined galvanic and citrate reduction reaction. Chemistry-A European Journal, v. 21, n. 35, p. 12314-12320, 2015Tradução . . Disponível em: https://doi.org/10.1002/chem.201501704. Acesso em: 27 abr. 2024.
    • APA

      Silva, A. G. M. da, Lewis, E. A., Rodrigues, T. S., Slater, T. J. A., Alves, R. S., Haigh, S. J., & Camargo, P. H. C. de. (2015). Surface segregated 'AG''AU' tadpole-shaped nanoparticles synthesized via a single step combined galvanic and citrate reduction reaction. Chemistry-A European Journal, 21( 35), 12314-12320. doi:10.1002/chem.201501704
    • NLM

      Silva AGM da, Lewis EA, Rodrigues TS, Slater TJA, Alves RS, Haigh SJ, Camargo PHC de. Surface segregated 'AG''AU' tadpole-shaped nanoparticles synthesized via a single step combined galvanic and citrate reduction reaction [Internet]. Chemistry-A European Journal. 2015 ; 21( 35): 12314-12320.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1002/chem.201501704
    • Vancouver

      Silva AGM da, Lewis EA, Rodrigues TS, Slater TJA, Alves RS, Haigh SJ, Camargo PHC de. Surface segregated 'AG''AU' tadpole-shaped nanoparticles synthesized via a single step combined galvanic and citrate reduction reaction [Internet]. Chemistry-A European Journal. 2015 ; 21( 35): 12314-12320.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1002/chem.201501704
  • Source: ACS Applied Materials & Interfaces. Unidade: IQ

    Subjects: OURO, CATÁLISE, PRATA, OXIDAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Anderson G. M. da et al. Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings. ACS Applied Materials & Interfaces, v. 7, n. 46, p. 25624-25632, 2015Tradução . . Disponível em: https://doi.org/10.1021/acsami.5b08725. Acesso em: 27 abr. 2024.
    • APA

      Silva, A. G. M. da, Rodrigues, T. S., Slater, T. J. A., Lewis, E. A., Alves, R. S., Fajardo, H. V., et al. (2015). Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings. ACS Applied Materials & Interfaces, 7( 46), 25624-25632. doi:10.1021/acsami.5b08725
    • NLM

      Silva AGM da, Rodrigues TS, Slater TJA, Lewis EA, Alves RS, Fajardo HV, Balzer R, Silva AHM da, Freitas IC de, Oliveira DC, Assaf JM, Probst LFD, Haigh SJ, Camargo PHC de. Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings [Internet]. ACS Applied Materials & Interfaces. 2015 ; 7( 46): 25624-25632.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1021/acsami.5b08725
    • Vancouver

      Silva AGM da, Rodrigues TS, Slater TJA, Lewis EA, Alves RS, Fajardo HV, Balzer R, Silva AHM da, Freitas IC de, Oliveira DC, Assaf JM, Probst LFD, Haigh SJ, Camargo PHC de. Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings [Internet]. ACS Applied Materials & Interfaces. 2015 ; 7( 46): 25624-25632.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1021/acsami.5b08725
  • Source: European Journal of Inorganic Chemistry. Unidade: IQ

    Subjects: NANOPARTÍCULAS, PALÁDIO, ELETROCATÁLISE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDOSO, Mariana B. T et al. A facile strategy to support palladium nanoparticles on carbon nanotubes, employing polyvinylpyrrolidone as a surface modifier. European Journal of Inorganic Chemistry, v. 2014, n. 9, p. 1439-1445, 2014Tradução . . Disponível em: https://doi.org/10.1002/ejic.201301585. Acesso em: 27 abr. 2024.
    • APA

      Cardoso, M. B. T., Lewis, E., Castro, P. S., Dantas, L. M. F., Oliveira, C. C. S. de, Bertotti, M., et al. (2014). A facile strategy to support palladium nanoparticles on carbon nanotubes, employing polyvinylpyrrolidone as a surface modifier. European Journal of Inorganic Chemistry, 2014( 9), 1439-1445. doi:10.1002/ejic.201301585
    • NLM

      Cardoso MBT, Lewis E, Castro PS, Dantas LMF, Oliveira CCS de, Bertotti M, Haigh SJ, Camargo PHC de. A facile strategy to support palladium nanoparticles on carbon nanotubes, employing polyvinylpyrrolidone as a surface modifier [Internet]. European Journal of Inorganic Chemistry. 2014 ; 2014( 9): 1439-1445.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1002/ejic.201301585
    • Vancouver

      Cardoso MBT, Lewis E, Castro PS, Dantas LMF, Oliveira CCS de, Bertotti M, Haigh SJ, Camargo PHC de. A facile strategy to support palladium nanoparticles on carbon nanotubes, employing polyvinylpyrrolidone as a surface modifier [Internet]. European Journal of Inorganic Chemistry. 2014 ; 2014( 9): 1439-1445.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1002/ejic.201301585
  • Source: Nano Letters. Unidade: IQ

    Subjects: NANOPARTÍCULAS, ESPECTROSCOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SLATER, Thomas J. A et al. Correlating catalytic activity of Ag−Au nanoparticles with 3D compositional variations. Nano Letters, v. 14, n. 4, p. 1921-1926, 2014Tradução . . Disponível em: https://doi.org/10.1021/nl4047448. Acesso em: 27 abr. 2024.
    • APA

      Slater, T. J. A., Macedo, A., Schroeder, S. L. M., Burke, M. G., O'Brien, P., Camargo, P. H. C. de, & Haigh, S. J. (2014). Correlating catalytic activity of Ag−Au nanoparticles with 3D compositional variations. Nano Letters, 14( 4), 1921-1926. doi:10.1021/nl4047448
    • NLM

      Slater TJA, Macedo A, Schroeder SLM, Burke MG, O'Brien P, Camargo PHC de, Haigh SJ. Correlating catalytic activity of Ag−Au nanoparticles with 3D compositional variations [Internet]. Nano Letters. 2014 ; 14( 4): 1921-1926.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1021/nl4047448
    • Vancouver

      Slater TJA, Macedo A, Schroeder SLM, Burke MG, O'Brien P, Camargo PHC de, Haigh SJ. Correlating catalytic activity of Ag−Au nanoparticles with 3D compositional variations [Internet]. Nano Letters. 2014 ; 14( 4): 1921-1926.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1021/nl4047448
  • Source: Nanoscale. Unidade: IQ

    Subjects: NANOPARTÍCULAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEWIS, E. A et al. Real-time imaging and elemental mapping of AgAu nanoparticle transformations. Nanoscale, v. 6, n. 22, p. 13598-13605, 2014Tradução . . Disponível em: https://doi.org/10.1039/c4nr04837g. Acesso em: 27 abr. 2024.
    • APA

      Lewis, E. A., Slater, T. J. A., Prestat, E., Macedo, A., O'Brien, P. O., Camargo, P. H. C. de, & Haigh, S. J. (2014). Real-time imaging and elemental mapping of AgAu nanoparticle transformations. Nanoscale, 6( 22), 13598-13605. doi:10.1039/c4nr04837g
    • NLM

      Lewis EA, Slater TJA, Prestat E, Macedo A, O'Brien PO, Camargo PHC de, Haigh SJ. Real-time imaging and elemental mapping of AgAu nanoparticle transformations [Internet]. Nanoscale. 2014 ; 6( 22): 13598-13605.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1039/c4nr04837g
    • Vancouver

      Lewis EA, Slater TJA, Prestat E, Macedo A, O'Brien PO, Camargo PHC de, Haigh SJ. Real-time imaging and elemental mapping of AgAu nanoparticle transformations [Internet]. Nanoscale. 2014 ; 6( 22): 13598-13605.[citado 2024 abr. 27 ] Available from: https://doi.org/10.1039/c4nr04837g

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024